

(NACC Accredited, Grade: B++, CGPA: 2.89)

CORE COURSE OUTCOME OF MATHEMATICS HONOURS PROGRAMME BASED ON CBCS CURRICULUM

Semester	Course code	Course name	Course outcome
I	C1	Analytic Geometry 2D, Higher Algebra & Trigonometry	 Changes of axes that is translation and rotation. General equation of second degree. Conic sections and its applications. Applications of complex argument and trigonometry.
	C2	Differential Calculus & Vector Calculus	 Finding successive differentiation. Applications of Leibnitz theorem. Partially differentiation of functions. Application of Differential calculus in gradient, divergence and curl.
11	C3	Analysis I	 Uses of the least upper bound property. Completeness axiom of real numbers. Concept of a real sequence and infinite series. Tests for convergence and divergence of sequences and series.
	C4	Integral Calculus & Analytic Geometry 3D	 Integrating different types of functions. Ex- Rational functions. Applying Leibnitz rule for differentiation under the sign of integration. Different types of coordinate systems and changing from one to the other.

			• Concepts of planes and straight lines and finding the angle between them.
III	C5	Theory of Real Functions	 Concepts of limit of real functions. Checking continuity at a point. Method of Riemann integration and Upper and Lower sums. Applications of Mean value theorems of integration.
	C6	Group Theory & Matrices	 Concept of binary operation, algebraic structure and groups. Examples of non abelian, cyclic and abelian groups. Algebra of matrices and finding Adjoint and inverse. Finding solution of homogenous and non homogenous system via matrices.
	C7	Differential Equations	 Finding order and degree of a differential equation. Calculation of Orthogonal trajectories. Solving higher order differential equations. Solving partial differential equations.
IV	C8	Analysis II +	 Improper integrals and its convergence. Applying tests for convergence of improper integrals. Applying Change of order in Multiple integrals. Idea of Vector integration and calculation of Surface integral.
	C9	Mechanics I	 Finding whether system of forces are coplanar. Conditions useful for equilibrium. Applications of S.H.M. Idea of work energy principle.
	C10	Ring Theory	 Definition of Ring and its examples. Theorems on subrings and integral domains. Idea of Ring Homomorphism. Working on special types of rings, mainly Polynomial rings.
V	C11	Analysis III {Metric Space & Complex Analysis)	 Definition of Metric spaces and its examples. Concept of Open set and closed set. Functions of a complex variable.

			Analyticity of a function of complex variable and Cauchy's
			theorem.
	C12	Linear Algebra	 Definition of Vector spaces and its examples.
			 Idea of linear combination, linear independence and Basis.
			 Dual spaces and its applications.
			 Linear operator and diagonalisation.
	DSE1	Number Theory	 Concept of divisibility and Division algorithm.
			 Finding G.C.D. of two or more numbers.
			 Certain Arithmetic functions and congruences.
			 Solving Diophantine equations.
	DSE2	Probability and Statistics	 Concept of Random variables and its examples.
			 Different types of distributions and their use.
			 Idea of sample space and discrete distributions.
			Distribution of Order statistics.
	C13	Mechanics II	Conditions for equilibrium.
			 Concept of Work and Catenary.
			 Understanding Newton's law of gravitation.
			The principle of D' Alembert's.
	C14	Numerical Analysis	 How to solve algebraic and transcendental equations.
			 Gauss's elimination method.
VI			 Understand Backward and forward interpolation formula.
			Calculating Numerical differentiation.
	DSE3	Linear Programming	 Properties of Convex sets and questions.
			 Simplex method and questions.
			 Transportation and Assignment problem.
	DSE4	Mechanics	Properties of a fluid.
			Motion of fluids.
			 Lagrangian and Eulerian methods.

GENERAL ELECTIVE OUTCOME OF MATHEMATICS FOR OTHER SUBJECTS

Semester	Course code	Course name	Course outcome
I	GE 1	Differential Calculus and Coordinate Geometry 2D	 Finding successive differentiation. Applications of Leibnitz theorem. Partially differentiation of functions. Changes of Rectangular axes and questions.
II	GE 2	Integral Calculus, Vector Calculus and Trigonometry	 Integrating different types of functions. Ex- Rational functions. Applying Leibnitz rule for differentiation under the sign of integration. Application of Differential calculus in gradient, divergence and curl. Applications of complex argument and trigonometry.
	GE 3	Real Analysis-I, Group Theory and Differential equations	 Bounds and idea of limit of a sequence. Introduction of groups and examples of cyclic and abelian groups. Solving differential equations of first order and first degree.
IV	GE 4	Real Analysis-II, Complex Variable, Set Theory and Matrices	 Idea of Riemann integral and upper and lower sums. Fundamental theorem of integral calculus. Cauchy-Riemann equations and questions. Idea of sets and examples. Matrices and its properties.